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Abstract

A class of shift-variant reduction operations is introdiicéhat is useful for performing efficient and
controllable shape and texture transformations betwesmiugon levels. In their most general form, the
operations proceed in three steps: (a) convolve a binargémath a kernel of arbitrary size; (b) threshold
the result; (c) subsample to produce the reduced imagendakbinary structuring element for the kernel,
the threshold convolution on a binary image is equivalers t@ank order filter, and the full reduction
operation is ahreshold reduction Threshold reductions that use convolution filters and suipde tiles
of equal size are optimized by combining the three operstiasing only logical raster operations and
producing threshold convolution values only at the sangppinints. For 2x reduction, the four possible
threshold values (1, 2, 3, and 4) refer to the minimum numlbedMd pixels within each 2x2 tile for
which a pixel in the reduced image will be ON. Algorithms fardtean raster operations are given for 2x,
3%, and 4x threshold reduction, and lookup tables that effity implement column raster operations are
provided. Threshold reduction rates of 216X pixel/second can be achieved with a Sun SparcStatitin2
A mask-forming image analysis cycle of threshold redugtanmgmented by morphology and followed by
replicative expansion to full resolution, is described] anme general properties of the cycle are derived.
A simple application of threshold reduction to documentgmanalysis, the extraction of halftone regions
from scanned images that also contain text and line grapisidéustrated. A sequence of 2x reductions
with first low and then high thresholds is used to create agedimage consisting of a mask over the
halftone regions. In this way, the extraction occurs as arahtonsequence of the reductions.

Keywords: image processing, image analysis, morphology, multicégwli, threshold reduction, thresh-
old convolution, segmentation, document, texture



1 Introduction

The intent of this paper is to describe an effective and cdatfmnally efficient multiresolution technique
for the analysis of shape and texture properties of largarpidocument images. Morphological image pro-
cessing can be used to extract both shape and textural iafilmmfrom images. Without special hardware,
however, use of morphological image processing at highu@ea has a large computational cost, particu-
larly in time, and especially when large-scale features@be identified. The amount of computation varies
approximately inversely as the third power of the reductamtor. Two powers are due to the relative number
of pixels, and the third power comes from the size of the stiiny elements or the number of iterations re-
quired to cover a given feature. Thus, efficiency dictatesithages be analyzed at the minimum resolution
required for characterizing the requisite shape and texdtructure.

Multiresolution methods for image analysis require cangton of representations of the original image
at many scales. The simplest method for constructing a resdiiution pyramid is successively to subsample
the image, at each reduction step taking only one pixel frerm atile of pixels in the original. This typically
(although not always) preserves the average density ofrtgmal image. Haralick et al.[6, 7] have empha-
sized the importance of using a low-pass filter prior to soiging, to prevent aliasing of high frequency
components. They investigated a morphological analoget#mpling theorem, with a view toward a best
effort for reconstructing a high resolution filtered imagenh a subsampled version. Burt[4] has shown
that multiresolution methods with small filters are capalfl@ccurately characterizing texture at multiple
scales. Preservation of such image qualities may be usafumhéasurement, compression, reconstruction,
and rendering, where fidelity to the original is paramount.

However, we are not explicitly concerned with either thetisppar the detailed textural fidelity of the
subsampled image. Instead, for most purposes of imagesasialye search for methods that give maximum
discrimination between regions with differing shape andue properties. The methods given here are
image-basedin that discrimination takes place almost entirely in thrage domain. Image texture, which
is a set of statistical properties of relations between Ot @RF pixels within a region whose size is much
larger than the measures used for gathering the statiplengs a central role. Separation of regions with
different texture is accomplished by operations that eitiféerentially transform texture with scale change,
or differentially project texture components at constamaties. Ideally, a sequence of operations is obtained
that projects out or labels all pixels in any chosen regiod, @es not mis-classify pixels in other regions.

Our multiresolution pyramid building operations useaak order filterbefore subsampling. This filter is
in fact athreshold convolutionand for extreme values of the threshold parameter it isvaégnt to morpho-
logical dilation and erosion. We call the multiresolutigpesationghreshold reductionSimilar approaches
have been taken. Tanimoto[10, 11] described construcfibmary image pyramids where a pixel at a given
level is computed from a threshold of the sum of ON pixels®thildren. Bones et al.[3] recently presented
an approach for segmenting document images based on mogitellimage processing and image analysis
at various levels of reduction.

The plan of the paper is as follows. We first describe the ehésnaf multiresolution morphology, and
introduce the threshold reduction operation. The optitionsof the algorithm for general purpose computers
is described, and the effect of threshold reductions orutexs explained. Some properties of the mask-



forming, pixel-labelling cycle of reduction/expansioea@iven. Then the method is illustrated by the problem
of separating halftone image regions from text and line &% conclude with a short discussion of the

approach. Two appendices provide details on the efficieptamentation of threshold reduction by logical

raster operations and lookup tables. All algorithms hawnbmplemented in C. CPU timings are given for

the Sun Sparcstatioh?’ .

2 Multiresolution mor phology

The filtering operations used in threshold reduction ar& @ader filters, which are a generalization of the
morphological operations erosion and dilation[9, 5]. Wetfdescribe these filters, and then show how they
are used to implement threshold reduction.

2.1 Morphology and threshold convolution

The fundamental morphological operations, erosion aratidil, are most efficiently implemented by trans-
lating the image and either ANDing or ORing it with itself. &jifically, letting X represent the binary image
and the (usually) small set represent thetructuring elementSE), theerosionc anddilation & of X by A
are defined as

XoA = (X (1)
zEA
zEA

where X, is thetranslationof X along the pixel vector, and the set intersection and union operations
represent bitwise AND and OR, respectively. These opearatgan be implemented as raster operations to
take advantage of the word-parallel representation of ikedgpwithin a computer.

Other morphological operations can be built from these t@bmost importance in image analysis are
theopening closing hit-miss transformandgeneralized openiri@]. The latter two operations allow explicit
pattern matching to background pixels as well as foregrquirels, and all but the hit-miss transform are
idempotent and center-independent.

These morphological operations all require exact matanéset SEs. An imperfect match, calledaank
order filter or, equivalently, ahreshold convolutionis a generalization of the erosion and dilation operations
of morphology. Them-th rank order transformation of a binary imageby a SE A is the set of pixel
positions to which the translated SE covers at leagixels in the image:

XO0,A4 ={z:]XNA,|>m} (3)

If the thresholdn = 1, XO,, A is the dilationX @ A.' Let A be anr x r square SE of “hits”. Then at the
other extreme, where the thresheldequals the cardinality? of A, XO,, A becomes the erosiok © A.
For the relationship between rank order and morphologigatations see [8].

1 A is the spatial inversion o about its center. Note the location of the center pointsteffilters in Figure 1.
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2.2 Threshold reduction

To motivate the use of threshold reduction, consider thélpro of segmenting a scanned image into text
and halftone image regions. We look more closely at thislprabn Section 4. A brute-force morphological
approach might be to close the image with sufficiently large ® solidify the halftone parts, and then open
the image with even larger SEs to remove the (somewhat bdoggebut smaller) text parts. The opening
would not affect the solid halftone regions, and the resuult be a separation mask covering only the
halftone areas. The closing removes OFF pixels that arer™ @ pixels, and the opening removes ON
pixels that are “near” OFF pixels, with the scale of “nearan by the size of the respective SEs. Both
operations can be viewed as alteration of short-range irneagere.

This suggests that filtering operations before subsampgliogld be chosen to change the image texture
SO as to mimic operations at full scale. To solidify pixel¢hin halftone regions, use a closing or dilation
operation before subsampling; then at reduced scale, uspeaanng or erosion before further subsampling.
Because it is expensive to use large SEs at high resolut®naweffect an arbitrary and effici&ttreduction
by a cascade of n 2-fold reductions, pre-filtering with 2xZ@Eeach step.

Thus we tile the image into 2x2 squares and subsample the-lgfppixel of each tile. Consider the 2x2
SE whose reference position is located in the lower-rigihbeo(Figure 1a). Dilation with this SE prior to
subsampling is equivalent to setting a threshold of 1 ONIpixehe 2x2 pixel tile: if at least 1 pixel is ON,
after dilation the pixel to be subsampled will surely be Okelwise, use of an erosion by the SE shown in
Figure 1b prior to subsampling is equivalent to setting aghold of 4 ON pixels in the tile: all four pixels in
the tile must be ON if the subsampled pixel is to be ON. Cledidyibility is gained if we generalize to allow
filters that threshold on 2 and 3 ON pixels within the tile. Tequisite filtering operations are threshold
convolution (or, equivalently, rank order filters) mengapreviously.
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(a) (b)
Figure 1. (a) Dilation filter for threshold 1; (b) erosionéiltfor threshold 4

We call the combination of a threshold convolution followsdsubsampling #éhreshold reductionThe
halftone segmentation problem is efficiently addresseddsgaence of 2x reductions using a small threshold,
say 1, to consolidate the halftone textured region, folldg further 2x reductions with a large threshold,
say 4, to remove the text regions. Larger atomic reductiatts mvore threshold levels for pre-filtering can
also be used, but in practice we have found that the fourrdifte2x threshold reductions provide sufficient
flexibility.



2.3 Optimization of the threshold reduction algorithm

It is only necessary to apply threshold convolution to thmigels that will be subsampled. Further, itis desir-
able to use logical operations instead of arithmetic, ireotd take advantage of word parallel instructions in
the computer. Threshold reduction is efficiently impleneery first forming a half-height, full-width image
using a logical operation (OR or AND) between each odd rowtaedceven row below it. This is followed
by reduction to a half-height, half-width image using a tagioperation (OR or AND) between each odd
column and the even column following it. If both row and coluoperations are OR, each ON pixel in the
reduced image is ON if any of the four pixels in the correspogdle of the original image were ON. This
is a threshold 1 reduction. Likewise, if both operationsAD, we get a threshold 4 reduction.

It takes approximately twice as much work to reduce imagehk threshold values of 2 and 3. To do
this, form two intermediate half-height, half-width imageising OR-AND and AND-OR for the row and
column operations. The threshold 2 and threshold 3 redunades are then found by taking theionand
intersectionof these intermediate reduced images, respectively. Theatipns are summarized in Table 1.
Along with generalization to 3x and 4x reductions, they argweéd in Appendix I. Appendix | also describes
symmetry properties of the threshold reduction operators.

Threshold Row/Column Operations
1 OR/OR
2 (OR/AND) U (AND/OR)
3 (OR/AND) N (AND/OR)
4 AND/AND

Table 1. Implementation of 2x threshold reduction with le@@l operations.



The final optimization is to replace the the column-wise dadjioperations, which are very slow on a
computer that stores the pixels sequentially in rasterpbyea set of lookup tables that emulate these column
operations. Algorithms for constructing various sized @i AND lookup tables are given in Appendix II.

With these optimizations, a 2x threshold reduction usitigegithresholdn = 1 or m = 4 is not much
slower than simple subsampling, and proceeds at about 289dbi Reductions using intermediate threshold
valuesm = 2 andm = 3 operate at about half this speed.

2.4 Rulesof thumb for threshold reduction

The effect on texture from a sequence of threshold redusisfairly predictable. For example, a set of four
sequential threshold 1 reductions is approximately equal dilation with a 16x16 brick SE, followed by
subsampling. Pairs of ON pixels separated by less than dlopixels will typically be joined. Likewise,
four sequential threshold 4 reductions are roughly eqeaio an erosion with a 16x16 brick SE, followed
by subsampling. Regions of ON pixels smaller than such &lvitt typically vanish in the reduced image.
Just as dilation and erosion expand and shrink regions of @& threshold reduction using thresholds of
1 and 4 tend to expand and shrink solid regions, respecti@ety some compensation may be required. The
subsampling operation is not translationally invariaohgequently, some variation is to be expected due to
the positioning of the 2x2 tiles on the image.

3 Propertiesof Threshold Reduction/Expansion Cycles

Here, we consider set properties of threshold reductiatates of such reductions, cascades augmented by
shift-invariant morphological operations, aogclescomposed of threshold reduction cascades followed by
replicative expansioto the initial resolution.

For r-fold reduction, at each reduction stageraxr tile is reduced to one pixel. For a cascadé aluch
reductions, dile setis the set of* x r* pixels that are reduced to a single pixel. In the replicagiyeansion
step, that pixel is then expanded back td & r* tile set, with each pixel assigned the same value as thessing|
pixel from which it was replicated. The result of a reductexpansion cycle is the creation of a new binary
image at full resolution, that can be used as an extractiagkmkhe value of each pixel in this image can be
viewed as a label, on the corresponding pixel in the origimalge, that describes some set of neighborhood
properties of the original pixel.

PROPERTY1 . A cycle composed of k threshold reductions, each with iotds»n = 1, and followed by
replicative expansion, is extensive.

Proof. If any pixel is initially ON in anr x r tile, then after a reduction/expansion cycle with= 1
reduction, all pixels in that tile will be ON. Fdt reductions, the result applies to each tile set’ok r*
pixels in the image™

PROPERTY 2 . Threshold reduction followed by replicative expansioth®original resolution is idempotent
and increasing. For minimum threshold it is extensive, faximmum threshold it is anti-extensive, and for
intermediate thresholds it is neither extensive nor artersive.
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Proof. After a reduction/expansion cycle, all pixels in a tile aitter ON or OFF. Any threshold reduction
of a tile with all pixels ON results in an ON pixel; likewisenyathreshold reduction of a tile with all pixels
OFF results in an OFF pixel. Thus, the second cycle does ramigehthe image, and the cycle is idempotent.
The cycle is increasing because increasing the number ofi€&Epn a tile can never cause the thresholded
tile to change from ON to OFF, and v.v. For minimum threshdléeny pixel is originally ON in a tile, after
the cycle all pixels will be ON, so the cycle is extensive. Faximum threshold, if any pixel is originally
OFF, after the cycle all pixels will be OFF, so the cycle is-&xtensive. For an intermediate threshold of m,
wherel < m < n = r?, all pixels in the tile will be turned ON if at least m pixelseainitially ON. If less
than m pixels are initially ON, they will be turned OFF, so thle is not extensive. Likewise if not more
thann — m pixels are OFF, all such pixels will be turned ON, so the cysleot antiextensivel

PROPERTY 3 . A cascade of threshold reductions followed by replicatgansion to the original resolution
is idempotent and increasing.

Proof. Suppose there arethreshold reductions in the cascade. Expansion replieatets reduced pixel
to ar® x r* set of pixels. Any cascade afthreshold reductions on such a set produces a single pixiel wi
the same polarity as the set; hence, the cycle is idempdthatcycle is increasing because turning any pixel
from OFF to ON in a* x 7* set can never cause the pixel produced by a cascakléhoéshold reductions
to change from ON to OFF, and viu.

Consider a cascade of threshold reductions, augmentedtastage of reduction by a set of morpholog-
ical operations, and ending with replicative expansiorhidriginal resolution. Under what conditions is
the result idempotent and increasing? First, if centeleddpnt operations such as dilations and erosions are
permitted, then the cycle will not in general be idempotbatause an arbitrary shift of the image is possible.
Second, if non-increasing operations like the hit-misegfarm and the generalized opening are permitted,
then the cycle can not in general be increasing. Third, i-imeneasing operations are permitted, then the
cycle will not generally be idempotent because the replieaxpansion step results in solid regions that may
give no match to a generalized opening. This leaves theWollp property of an augmented cascade:

PROPERTY4 . A cascade of threshold reductions, augmented at each staggluction by arbitrary in-
creasing, anti-extensive, idempotent morphological apens (such as opening), and followed by replicative
expansion to the initial resolution, is idempotent and @asing.

Proof. The increasing property of the augmented cascade follosasuse each atomic operation (thresh-
old reduction or opening) is increasing. Because tile setei@ interact under threshold reduction, and
because the opening is anti-extensive, any tile set thabh®dlge second cycle with only OFF pixels will
remain in that condition. Further, because (a) both thiestealuction and opening are increasing and (b) at
the beginning of the second cycle a tile set is composed dbumipixel values (ON or OFF), any pixel set
that reduced to an ON pixel in the first cycle will surely reduc the same value in the second cycle, and the
augmented cascade is idempotént.

This result does not apply wherlosingsaugment the threshold reductions. Figure 2 shows a simple
example containing four 2x2 tiles, where the result of theosd cycle is different from that of the first. The



cycle consists of a closing with a diagonal SE of length 3, aeghuction with a threshold of 1, and a 2x2
expansion to original scale. In the first cycle the closing ha effect, but in the second cycle, the closing
turns one pixel ON in each of the empty tiles.

NN NN HiN|N|N
] NN HiE|N HiE|N|N [
H NN NN HiN|N|N S
NN NN HiE|EE o
(@) (b) (©) (d) (€)

Figure 2. (a) initial image, (b) image after first cycle,
(c) image in second cycle after closing with 3x3 SE in (e),
(d) image after second cycle.

4 Example: segmentation of halftoneimage areas

Image regions in scanned documents have a variety of stuagertextural properties, due to both the method
of construction and the scanning and thresholding contditi&tippled regions are regular and periodic; for
all pixels, the minimum distance to the closest ON pixel iarply bounded. Halftone regions constructed
with error diffusion algorithms can have an anisotropidrtisition of this measure, and an upper bound for
the distance is not guaranteed. The scanner thresholdmgaeese isolated foreground or background pixels
to disappear (i.e., regions of light halftoning become tighand dark regions solidify). As a result, the
textural statistics of such image regions is highly vaeabl

The multiresolution method described here correctly sldlipixels that do not belong to image areas.
When applied to regular stipple patterns and large darlonsgiit also correctly labels all pixels within
such image regions. However, it may miss some pixels thainavery light and extensive image regions.
Thus, depending on the set of morphological operationsahgment the threshold reduction cycle, the
segmentation mask may not cover all pixels in some imagesarea

The resolution of images displayed here is given in unit$ #ina independent of the resolution of the
physical rendering device. All images are labelled withhbthte sampling resolutionin pixels/inch, and
the rendering resolutionalso in pixels/inch. The sampling resolution gives thee 2t the sampled (or
subsampled) pixels in the image relative to the originalergas the rendering resolution gives the size
of these sampled pixels as rendered on the page. nTfdgnificationis the ratio of sampling to rendering
resolution.

As an example of a typical problem, Figure 3 shows a scannademwhere the contrast in the halftone
region has been increased by the scanner: the dark partsblaliied and the light parts have opened up.
Figure 4a shows the image after two @x = 1 threshold reductions, and Figure 4b shows the result of a
subsequent closing by a 3x3 brick SE. The halftone regiontientirely solidified, and the text is somewhat



blocked up. Figure 4c shows the result of two more 2x threshedluctions, this time at the other extreme
with m = 4. Remaining pixels in the text/line regions are much lessdeand can be eliminated entirely
with an opening by the 3x3 brick SE, as shown in Figure 4d. Thigeeprocess on this 8 million pixel image

takes about 0.5 sec.



Nation

How to Wreck the Treaty

They are officially known as

reservations, but lawmakers

call them “killer amend-

ments.” Attached to a treaty

by the Senate, they require

the President to renegotiate
certain provisions. Although Reagan is
expected to have little trouble getting the
two-thirds majority needed to ratify the
INF accord, such likely opponents of the
treaty as North Carolina’s Jesse Helms
and Wyoming's Malcolm Wallop may
aim to scuttle it by mustering a majority
in favor of amendments that sound rea-
sonable but would prove lethal.

Defenders will try to protect the pact
by making sure that any refinements are
expressed in the form of “declarations” or
“understandings” that do not require ne-
gotiating a revised treaty with Moscow.
California Democrat Alan Cranston, who
will be a leader in the fight for ratification,
says Senate approval will ultimately de-
pend not on “who’s for or against it” but
on “who will withstand the killer amend-
ments and who won’t.”

Among the issues that will be ad-
dressed by either reservations or more be-
nign understandings:

Conventional force levels. Georgia Dem-
ocrat Sam Nunn will hold hearings in the
Armed Services Committee on steps the
West should take to reduce the Warsaw
Pact’s superiority in non-nuclear weap-
ons. Nunn and others believe that imbal-
ance may be more threatening with the
elimination of Euromissiles. He

Opponents will offer changes that seem reasonable but are lethal

Slgning the accord In the East Room
Could “killer amendments” destroy the deal?

jected the notion after defense officials real-
ized it would work both ways; they did not
want Soviet inspectors poking around clas-
sified facilities in the U.S.

Human rights and regional conflicts.
Lawmakers could link ratification of the
INF agreement to issues like a Soviet with-

2
3
2
z
z
H

drawal from Afghanistan or an easing of
the restrictions on Jewish emigration.
Many Senators might find it hard to vote
against such politically popular measures.
But because these provisions have little
real relevance to the missile accord, they
could probably be shot down before
reaching the Senate floor for a vote.

Compliance. Opponents’ best hope might
be an amendment requiring the President
to certify Soviet adherence to all other
arms-control agreements before the INF
pact could be carried out. “The beauty of
this kind of amendment is that it is very
easily understandable to the average
American,” says Dan Casey, head of the
American Conservative Union. “You
don’t sign contracts with people who have
not honored past contracts.” Reagan has
been backpedaling on this thorny topic. In
a report to Congress on arms-control ne-
gotiations last March, the President cited
compliance with deals in the past as an
“essential prerequisite” for future agree-
ments. Yet in a similar report this month,
that prerequisite had been watered down
to become “an essential element of my
arms-control policy.” Although such an
amendment would not require that the
treaty be renegotiated, it would make it
difficult for Reagan to put the pact into ef-
fect: the Administration went on record a
week before the summit with a list of alle-
gations about how Moscow has violated
the 1972 Antiballistic Missile Treaty.

One obstacle to ratification may be the
way the Administration is treating that ABM
accord. The Administration insists that
what the Senate was told by Government
witnesses during ratification hearings is not
relevant to what the treaty really means on
the subject of space-based defense. This out-

rages Nunn, who threatens to re-

issaid to be considering a unilat-
eral declaration of objectives
that NATO should achieve after
passage of the treaty. INF oppo-
nents may push for a more le-
thal amendment that would bar
the President from carrying out
the treaty’s provisions unless the
conventional-arms imbalance
in Europe is redressed. Senate
Majority Leader Robert Byrd
said last week he thought such a
restriction “could be a killer.”

Verification. The INF pact has
precedent-setting provisions that
allowthe US.and the USS.R.to
inspect each other’s missile sites
for evidence of cheating. Some
conservative Senators, however,
may want an amendment pro-
viding for the investigation on de-
mand of “suspect sites” not enu-
merated in the treaty. That
would be strongly opposed by
both the White House and the

|
Bonanza for Bush

George Bush called them a group of “representative Americans.”
What they more closely represented, however, was Bush’s aspira-
tions in the early presidential contests; three of the five guests he
brought to his caviar and blini breakfast with Gorbachev happened
to be from lowa and New Hampshire. Bush’s campalgn staff even
hired a camera crew, who beamed his summit scenes to important
primary states. Bush also took partial credit for prompting Gorba-
chev’'s walkabout. “It's too bad you don't have time to go Into a store
or greet people,” Bush told him during aride. A moment later Gorba-
chev ordered, “Stop the car.” Although Bush looked awkward and
forgotten as the crowd flocked around the forceful Gorbachev, just
being seen with the Soviet leader was a boost to Bush's
campaign.

Robert Dole’s campaign spokeswoman, Katie Boyle, said she
was “surprised Bush didn’t invite Gorbachev to Des Moines for a
fund raiser.” Dole did manage to get eight minutes alone with the
summit superstar. He dispensed with his griping about the wf treaty
and told the General Secretary that it would be ratifled. Leaving the
meeting, Gorbachev wished Dole good luck in the 1988 race.
“Thank you,” Dole replied. “Fm winning.” But as Bush bade Gorba-

Pentagon. In fact, the Soviets chev farewell at Andrews Alr Force Base, it was clear who had tri-  require renegotiation.”
agreed to this idea in principle umphed in last week's political sideshow. —By Jacob V. Lamar J. Reported
earlier this year, but the USS. re- by Jay Peterzell/Washington

view the entire negotiation rec-
ord of the INF pact unless the
President and his advisers aban-
don the notion that they can rein-
terpret a treaty after the Senate
has ratified it.

The President is going to
need all the help he can get from
top Republican Senators. “It is
only when the senior leadership
and the White House work in
tandem that people will be able
to not vote for something Wallop
or Helms introduces,” says a vet-
eran Capitol Hill staffer. He
adds, “A lot will depend on
Dole.” Fortunately for Reagan,
the Senate minority leader and
presidential candidate finally
seemed ready to support the ac-
cord, after weeks of mealy-
mouthed hedging. Last week
Bob Dole called the INF treaty a
“watershed accomplishment.”
He also said he did not foresee
“any amendment that’s going to

26
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Figure 3. Scanned image containing halftone image area(s).
Sampling resolution is 300/in; rendering resolution is/8Y5
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Figure 4. (a) 4x reduction wittn = 1 for each stage. Resolution: sampling (75/in), renderir@{ih).
(b) Closing with 3x3 SE. Resolution: same as (a). (c) Furthereduction withm = 4 for each stage.
Resolution: sampling (19/in), rendering (49/in). (d) Omgrnwith 3x3 SE. Resolution: same as (c).
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In addition to the mask region over the halftone image, a kmas$k region covers a graphic figure in the
upper-left corner. This was left after the final opening vatBx3 brick SE. If a 4x4 brick SE had been used,
or if the image had been further reduced 2x (to 32x reductiomfthe initial sampling resolution) and then
opened with a 2x2 brick SE, this region would have been rechover complicated images, small graphics
and halftone regions can be sieved by opening with a set aof SEs

In part because of the final opening, the mask in Figure 4ckpéeded to full resolution, would not not
cover all the pixels in the lightimage areas. This can befredtin a number of ways. A simple approach, that
is effective for images with rectangular image regions @hitgonstitute the majority of cases), is to identify
the image regions by computing the bounding box of connectedponents in the mask. This is nearly
instantaneous at the low resolution of 19 pixels/inch. Tooawodate non-rectangular image regions, the
mask can either be closed with a rectangular or square SE;am be subjected to some number of iterations
of a morphological bounding box filling algorithm[1]. Eitheay, the mask regions will be solidified to some
extent, but without expansion of the boundaries.

5 Discussion

The search for fast and effective methods for characteyigome short-range texture properties of binary
images led directly to the use of threshold reduction as aéeynique for multiresolution image analysis.

Threshold reduction is closely related to image morphgla@nd morphological operations are useful in

conjunction with threshold reduction for performing imagelysis within the image domain.

We have shown how the basic operations can be optimized hdeerapid segmentation of binary images.
The example given for motivating the use of threshold raddac¢talftone image segmentation, is only one
of a large set of segmentation tasks on document images fichulireshold reduction and morphology are
well-suited. For example, word boundaries or word maskgasdly found using threshold reduction, with a
small threshold to close intra-word spaces and augmenteadoghological operations such as closing. For
this case, reduction can typically be carried down to a sexgpésolution of about 40/in, which is still high
enough to keep words from joining.

Some image analysis can be performed entirely in the imag®o with only image processing opera-
tions. For example, reduction/morphology/expansioneycian be used to create full resolution separation
masks for selected regions. This can be understood as aesaltition pixel labelling process, and some
properties of such cycles have been derived. Often it isulisefextract informatioraboutthe image, in
a form that does not directly label individual pixels. A tgal example is the determination of bounding
boxes for regions that are computed at low resolution afteasgade of threshold reductions augmented by
morphology.
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6 Appendix |: Implementation of threshold reduction by logical oper-
ations

In the procedure outlined above for= 2, a threshold reduction is effected by a sequence of logpmaiations
between rows and columns of arx r tile. This appendix gives a general method for finding a sehof
r? boolean operators, implementable by row and column ragtmations, that map anx r tile to a single
pixel, such that foi = 1,2...m, there exists an operator with the following property: fbrrax r bit arrays
with fewer than i ON pixels, the result is a single OFF pixelgdor all arrays with i or more ON pixels, the
result is a single ON pixel.

The solution is not unique, even with the following consitai

1. Row operations are done before column operations.
2. Only “and” and “or” operations are allowed between rowd eolumns.

For a 2x2 reduction, there are orlly configurations, and the minimum mapping operators canyebsil
found by considering these 16 cases. However, the numbemdigarations grows exponentially with the
powerr?: for r = 3 there are2’ = 512 configurations; forr = 4 there are2'® = 65, 536; etc. Operators
that work over such large sets can be found by decomposittonproducts of particular row and column
operators that exploit symmetries. We choose one-dimeakiow and column operators that are threshold
operators for 1x andrx1 arrays. Their product can then be used to form a basis s#tddwo-dimensional
rXr operators, from which the threshold operators are formeadmean combinations.

6.1 Threshold operatorsfor » = 2 reduction

The requisite thresholding operators on either rows orroakiare

a: or 1 or more ON bits
b: and 2 ON bits

The four products of these operators form a basis set of tipsran 2x2 bit arrays, where the first operation
is between rows and the second is between columns:

aa: or/or 1 or more ON bits

ab: or/and at least 1 ON bit in each column
ba: and/or at least one column with 2 ON bits
bb: and/and all 4 ON bits

The text on the right describes those 2x2 arrays for whiclio#sés operator returns an ON bit. The operators
aa andbb are clearly the required ones for thresholding at 1 and 4 @8\ t@spectively. To find thresholding
operators for 2 and 3 ON bits, we must form boolean combinatas these basis operators.

From the 16 possible 2x2 bit arrays, choosmaonicalsubset by applying the following two reduction
rules, which follow directly from the use of one-dimensibteshold operators:
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1. The position of ON bits within a column does not matter. Tpusthe ON bits in each column in the
uppermost rows.

2. The columns can be permuted. Thus, arrange the columns w® thavnumber of ON bits in each
column decreasing to the right.

Using the notation that arxr canonical array witle(j) entries in thej** column is denoted

r{e(1), ... ,e(r)}

and grouping them into sets that have exactly one, two, tfaeeé four ON bits, the set of 2x2 canonical
arrays is

2{1,0} [one ON bit]
2{1,1} and2{2,0} [two ON bits]
2{2,1} [three ON bits]
2{2,2} [four ON bits]

These canonical arrays should be visualized as 2-dimesidsomary objects, onto which the basis operators
map as:

2{1,0} <==> aa
2{1,1} <==> ab
2{2,0} <==> ba
2{2,1} <==> ab andba together
2{2,2} <==> bb

The threshold operators are then the union of operatorsfiep@ceach canonical array, which in general are
intersections of the basis operators. The 2x2 thresholchtps! I;, I1,, 115, andl 1, are seen to be

I1;: aa all with 1 or more ON bits
I1,: ab U ba all with 2 or more ON bits
115 ab N ba all with 3 or more ON bits
11 bb all 4 ON bits

This is identical to Table 1. Note that the union of basis epmsab andba projects all arrays represented
by 2{1,1} and2{2, 0}, the two canonical arrays for 2 ON bits. Hence, operdtigris the union of these
two basis operators. Also, there is only one canonical doag ON bits, and the threshold operatbf;
corresponding to this array requires theersectionof the basis operators) andba.
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6.2 Threshold operatorsfor » = 3 reduction

We outline the extension t8x3 = 1x1 reduction of the method described above. As before, staht wi
one-dimensional threshold operators for either rows anrools, which are now composed of more than one
operation. Denote an operator

or; ;

to mean ther of i andj, wherei, j = {1,2,3} andi # j. Then one way to write the three one-dimensional
threshold operators for rows or columns is

: orioUJor;s [1 or more ON bits]
b: and;, Uand; 3 Uand;s [2 or more ON bits]
C. andLQ N andl,g [a" 3 ON b|tS]

As before, form a basis set of nine operators on the 3x3 kayarfrom products of these row and column
operators. When these operators act on the 3x3 bit arragysgitre an ON bit for the stated subset of arrays:

aa. 1 or more ON bits

ab: at least 1 ON bit in 2 columns
ac. at least 1 ON bit in 3 columns
ba: at least 2 ON bits in 1 column
bb: at least 2 ON bits in 2 columns
be: at least 2 ON bits in 3 columns
ca. at least 3 ON bits in 1 column
cb: at least 3 ON bits in 2 columns
cc. all 9 bits ON

To form the threshold operators as boolean combinatiortsesit basis operators, construct all canonical 3x3
bit arrays that are distinct in the sense of the reductiogsrglven above. They are

3{1,0,0} [one ON bit]
3{1,1,0},3{2,0,0} [two ON bits]
3{1,1,1},3{2,1,0}, 3{3,0,0} [three ON bits]
3{2,1,1},3{2,2,0}, 3{3,1,0} [four ON bits]
3{2,2,1},3{3,1,1},3{3,2,0} [five ON bits]
3{2,2,2},3{3,2,1}, 3{3,3,0} [six ON bits]
3{3,2,2},3{3,3,1} [seven ON bits]
3{3,3,2} [eight ON bits]
3{3,3,3} [nine ON bits]

The action of the nine basis operators given above leads éx@mession (in general, as an intersection
of basis operators) for each canonical array. For exampdecanonical arrag{2, 1, 1} is projected by the
intersectionba N ac, the array3{2,2,0} is projected bybb, and3{3,1,0} is projected byab N ca. The
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threshold operatorsl I, - 111, are found as the union of these generally composite opsratoresponding
to the canonical arrays. Thus, for example,

I1l, = (ba N ac) U bb U (ab N ca)

Terms can often be reduced, and sometimes they can be exghresag operators for lower order reduction;

e.g.,
III; = ac U II; U ca

Note, however, that the andb operators in/ I3 are the threshold operators for a 3x1 (or 1x3) bit array, not
those for a 2x1 array.

6.3 Threshold operatorsfor » = 4 reduction

The four one-dimensional 4x1 or 1x4 threshold reductiorraipes can be written in a number of ways; e.g.,

a. oryo Uorsy [1 or more ON bits]
b: (or12Nors4) U (or; 4 Norys) [2 or more ON bits]
c (and; > U and;4) N (and; 4 U and, 3) [3 or more ON bits]
d: and; 2 N and; 4 [all 4 ON bits]

Construction of the 16 two-dimensiona 4 threshold operators proceeds as before.

6.4 Symmetry properties of threshold reduction operators

From the foregoing examples, it is apparent that the thitdsieduction operators satisfy the following sym-
metries:

1. The two-dimensional operators are symmetric with resigethie order of row and column operations.

2. For any dimensionality, if. is the cardinality of the tile, so that< m < n, then the threshold — m
operator can be found from the thresheldperator by interchanging all bit unions with intersecsion
(this includes swappingnds with ors, as written above).

The second symmetry relation follows from an underlyingkrarder duality between foreground and
background pixels: a filter of cardinalitythat projects formn or greater foreground pixels is identical to one
that projects fon — m or less background pixels.

7 Appendix |1: Lookup tablesfor 2x2 reduction

Efficient implementation of column reduction operationstfe 2x2 operator§/,;—I I, requires table lookup.
We give two2'%-entry tables, one foor and one forand, that are indexed by sixteen bits in the interme-
diate image (generated by raster operations on the rows)c@main eight bits of the reduced image that
correspond to the pair-wiser-ing or and-ing of the index bits, respectively.
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These lookup tables are generated from an iterative atgoiihat does not require bit masking. For the
OR table with a 16-bit index the 8-bit table valuesi) are generated by

£0)=0,i = 1;

for (d=0..7)
ig = 2% [* start value of i */
to = 24 /* increment value of t */
for (r=1...3)

for (k=1..4—1)
t(1) = t(k) + to;
1 =14 1;

Similarly, a 16-bit index AND table is generated by

£0)=0,i = 1;
for (d=0..7)
ig = 2% [* start value of i */
to = 2% /* increment value of t */
for (r=1...3)
if (r<3) tInc=0;
gdse tinc = tg;

for (k=1..0—1)
t(i) = t(k) + ting;
1 =14 1;

The size of each lookup table is determined by the maximumnevaf the parametet. Specifically, the

number of index bits i€(d,... + 1). For example, an 8-bit inde{-entry) set of tables can be generated by
letting d run from O to 3.

With this hybrid (rasterop/lookup) implementation, themquutation time is divided nearly equally be-
tween the row logical operations and the subsequent colaokup operations.
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